

Searching for Images in the era of Deep Learning

STM Innovations December 5th, 2018

DR HARALAMBOS MARMANIS EVP & CTO, CCC

"Drops splashing" on Google

>

What if?

- We had hand-drawn sketches for a book and wanted to search our image inventory to identify professional drawings or pictures?
- What if we wanted to organize the images for an astronomy journal so that all look-alike galaxies are grouped together?
- What if we wanted to autogenerate captions for our vast inventory of images?
- What if ... ?

Before Deep Learning

- Metadata-based image indexing
- Content-based image indexing
 - Color histograms (HSV, RGB)
 - JPEG Coefficient histogram
 - Visual Bag of Words with SHIFT or SURF
 - Approximate fast search based on hashing and metric indexing

Great tool to use for the above: LIRE

ILSVRC

- Task: Image Classification (1000 Classes)
 - 1.2m images in the training set
 - 100k images in the test set
- Goal: Predict the best (top 5) class
- Evaluation: One of the top 5 is correct

ImageNet search for "dog"

Let the party begin!

Li Fei-Fei: ImageNet Large Scale Visual Recognition Challenge, 2014 http://image-net.org/

ILSVRC Progress

Year	Winner	Error	Depth	Filter	С	T (Days)
2012	AlexNet	15.4%	7	11x11	M	6
2013	ZFNet	11.2%	7	7x7	M	12
2014	GoogLeNet	6.7%	100	1x1, 3x3, 5x5	Н	7*
2015	ResNet	3.6%	152	3x3	L	14-21

Deep Learning is not just CNNs

AlexNet |14| Clarifai [22] CNN-based Methods GoogLeNet [25] Deep Belief Networks [8] Deep Boltzmann Machines [26] RBM-based Methods Deep Energy Models [27] Deep learning methods Sparse Autoencoder [28] Denoising Autoencoder [29] Autoencoder-based Methods Contractive Autoencoder [30] Sparse Coding SPM [31] Laplacian Sparse Coding [32] Sparse Coding-based Methods Local Coordinate Coding [33] Super-Vector Coding [34]

Typical CNN for image processing

- Input layer
- Convolution layer
- Pooling layer
- Convolution layer
- Pooling layer

- Dense layer
 Image Representation
- Output layer
 Image Classification

Enhanced Search with CNN models

- Build a CNN model
- Train the model
- Store the model
 - Get the CNN feature vectors and index them in Lucene as Points
- Perform a feedforward pass with our image
- Use the FloatPointNearestNeighbor.nearest(...)
- Select the top-k results

The art of the trade

- Network architecture
 - How many layers? What type of layers? How many nodes in each layer for a certain task?
- Training strategy
 - Dropout & DropConnect
 - Data Augmentation
 - Generate image translations and horizontal reflections
 - Alter the values of the RGB channels in training images
 - Pre-Training and Fine-Tuning
- Training with limited data
- Time complexity

