

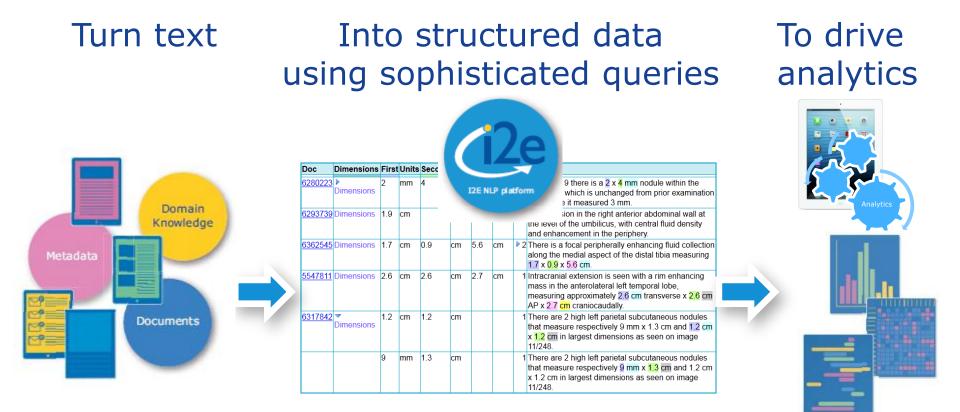
Linguamatics NLP Text mining Literature Examples

STM April 2016 Susan M LeBeau, Ph.D. Vice President, Sales

About Linguamatics

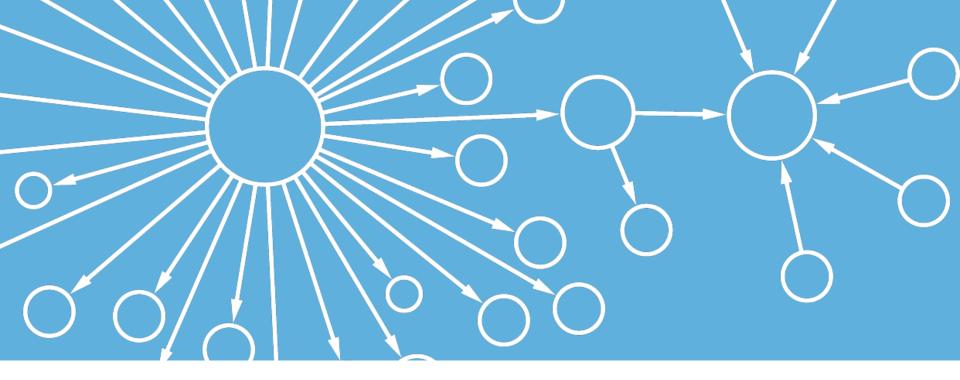
- Agile, scalable, real-time NLP-based text mining
- Fact extraction and knowledge synthesis

Pharma/Biotech	Healthcare	Government		
Including 27 of	Including Kaiser	Including		
the top 50	Permanente	FDA		

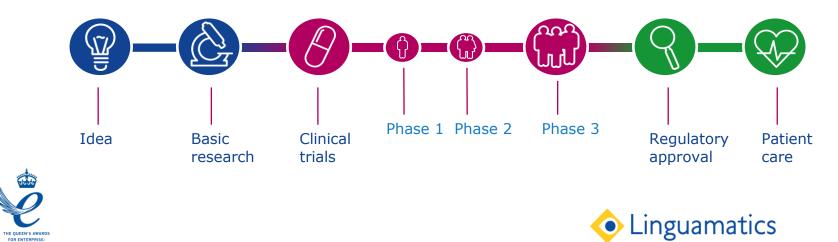


Challenges in Unstructured Data

Different word, same Different expression, same meaning meaning cyclosporine Non-smoker ciclosporin Does not smoke Neoral Does not drink or smoke Sandimmune Denies tobacco use NLP Different grammar, same Same word, different meaning context 5mg/kg of cyclosporine per day Diagnosed with diabetes 5mg/kg per diem of cyclosporine Family history of diabetes cyclosporine 5mg/kg per day No family history of diabetes



I2E Transforms Text into Actionable Insights


Accurate results: only retrieves relevant results Complete results: comprehensive and systematic Enterprise Warehouse

Literature Analytics – *Medline Abstracts*

2014

BUILD LITERATURE KNOWLEDGE BASE GAINING BETTER VALUE FROM SCIENTIFIC LITERATURE

CHALLENGE

Needed to quickly build a literature knowledge base around tumor microenvironments which would capture relationships between genes / proteins and their effect / correlation on/with a variety of cellular actors

Challenges: the Customer Viewpoint

- Define the different concepts
 - E.g. 30,000 human genes, their aliases, manage term disambiguation * morphological variations
- Analyse the semantic relationships between the objects including negation
 - Capture the meaning and structure the facts
- Harmonise the vocabulary
 - Ontologies, preferred terms....
 - Flexibility to use customised thesauri, ontologies
- Applicable to 30 million abstract records
 - Queries efficiently executed, remotely, with results retrieved within seconds or minutes
- Complex queries
 - Requires an efficient and user friendly interface to test and tune
- Export in convenient formats for post-processing

BUILD LITERATURE KNOWLEDGE BASE GAINING BETTER VALUE FROM SCIENTIFIC LITERATURE

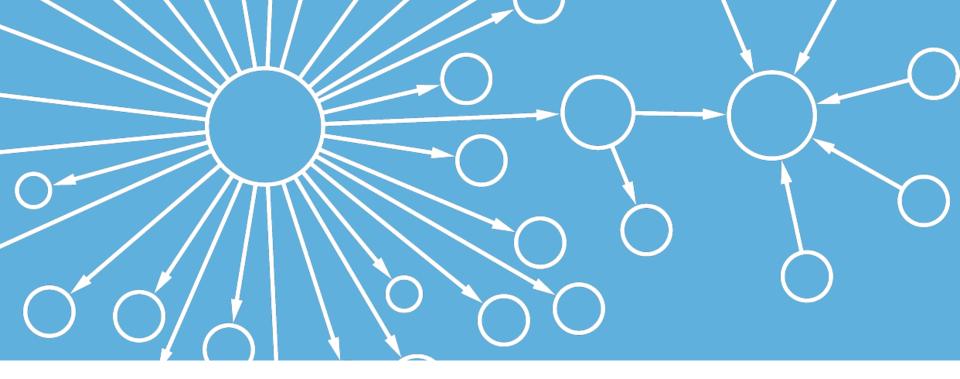
CHALLENGE

Needed to quickly build a literature knowledge base on tumor microenvironments which would capture relationships between genes / proteins and their effect / correlation on/with a variety of cellular actors

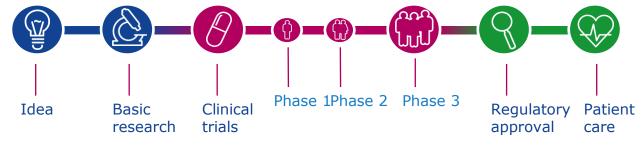
SOLUTION

Linguamatics I2E provided the ability to run a single query across the entire set of MEDLINE abstracts to extract genes, effects, cell types, phenotypes, and obtain comprehensive results for analysis.

Structured results retrieved within seconds/minutes


BENEFIT

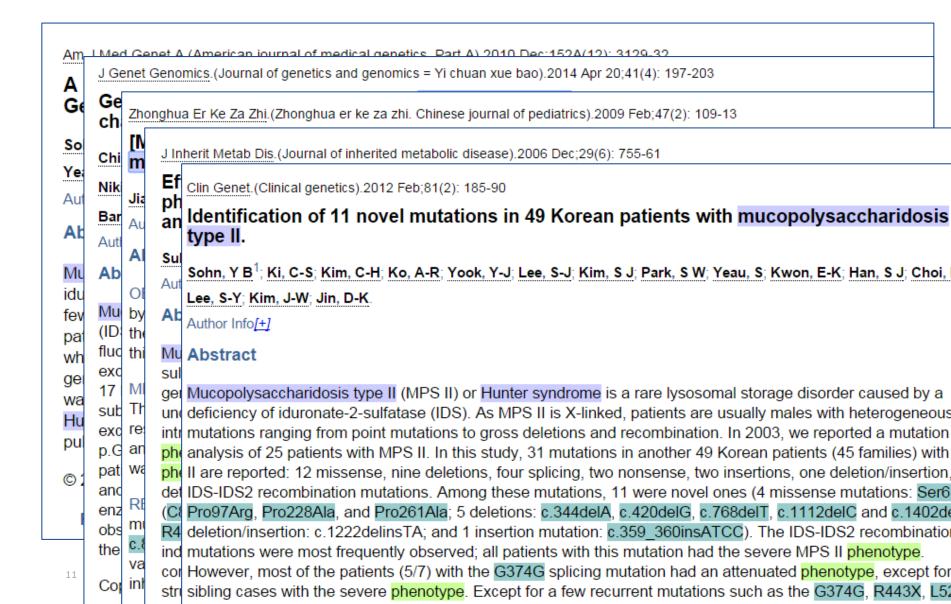
This equates to ~20 billion unique keyword searches


Rapidly added new knowledge to internal translational science database for direct use in projects

This would have taken weeks or not be possible at all

Genotype-Phenotype analytics Full Text PubMed Central

TEXT ANALYTICS FOR RARE DISEASES GENOTYPE-PHENOTYPE ASSOCIATION IN HUNTER SYNDROME


CHALLENGE

- Paucity of knowledge of natural history of disease
- Sparse data, needs high recall across full text papers
- Mutation patterns very variable
- Structured databases lack broad phenotypic association data

Data buried in scientific literature

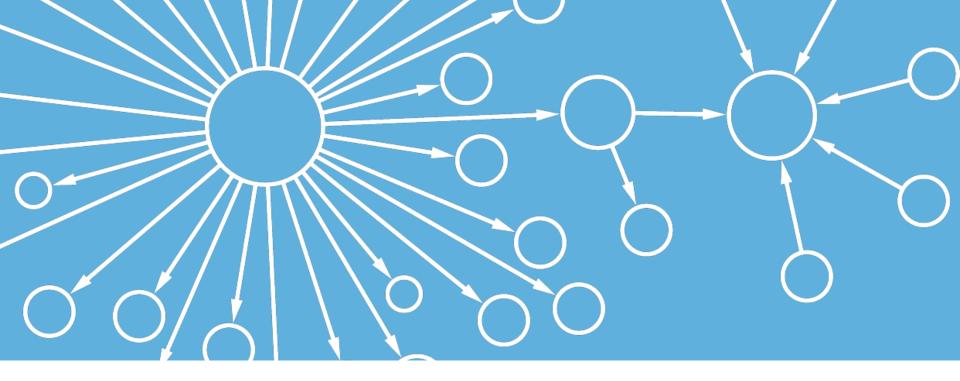
Extracted, Structured with I2E

Linguamatics										
Found 95 assertions from 1000 hits (user limit reached) in 27 docs.						H	HTML	🔽 as 🖽 🖽 📰 in 🖞 👭 🗅		
Examined 23747489 (92%) of 25757954 docs.						Do	ocs/assertior	n: All ▼ Hits/doc/assertion: 10 ▼		
Took 15.1144 secs (CPU 6.36).							Cross prod	uct Zip archive: None 🔻 🗹 Page Results		
[more details]										
PMID	Source	Mutation Genes/Prote	Genes/Proteins	Severity	Phenotype		Doc		Hit	
			Genes/Froteins	-						
		Q531X		mild	general		Hopwood gene		1 and R48P, L196S, Q531X (mild phenotype).	
15614569				severe	general		Chang Ex II 156		1 Patients with R88C and H138R mutations displayed a severe phenotype.	
17391447	▶ PDF	E177X		attenuated	general	▶2	Froissar ppl 173	<u>91447</u>	1 In contrast, the attenuated phenotype reported in the patient carrying the E177X mutation (26) is	
9660053	▶ PDF	nonsense mutation		very mild	general	▶ 2	Froissar enet 96	60053	1 This nonsense mutation is associated with a very mild phenotype (patient 56, aged	
24125893	▶ PDF	c.1122C>T		attenuated	general	1	Mucopoly nts 24	125893	1 mutations present correlation with the attenuated form (c.1122C>T), while a greater	
24780617	Abstract	p.lle360Tyrfs*31		severe	general	1	24780617	l	 2 mutations whereas the p.Ser142Phe and p.Ile360Tyrfs*31 mutations caused the severe disease manifestation. 	
9712538	PDF	A deletion involving exons 2-4 in the iduronate-2-sulfatase gene	IDS	intermediate	disease	1	Bonuccel enet 9	0 <u>712538</u> I	2 A deletion involving exons 2-4 in the iduronate-2- sulfatase gene of a patient with intermediate Hunter syndrome	
1284597	Abstract	R468W		mild	disease		<u>1284597</u>		1 Mutation R468W of the iduronate-2-sulfatase gene in mild Hunter syndrome (mucopolysaccharidosis type II)	
7887413	▶ PDF	P469H		mild	general	1	Jonsson enet 7	7887413	1 mutations in exon 9 had mild disease (P469H; Y523C; R468W,	
	PDF	R468W		mild	disease		Mutation S II 798	81716	1 C (1992) Mutation R468W of the iduronate-2- sulfatase gene in mild Hunter syndrome (mucopolysaccaridosis type II)	
8566953	Abstract	A346D		mild	general	1	8566953		1 The A346D mutation was associated with the mild phenotype, all others with the	
9501270	▶ PDF	Q389X		severe	disease	1	Isogai 1 bDis 95	<u>501270</u>	 nonsense mutations (Q80X; Q389X) in patients with severe Hunter syndrome (mucopolysaccharidosis type II) 	

TEXT ANALYTICS FOR RARE DISEASES GENOTYPE-PHENOTYPE ASSOCIATION IN HUNTER SYNDROME

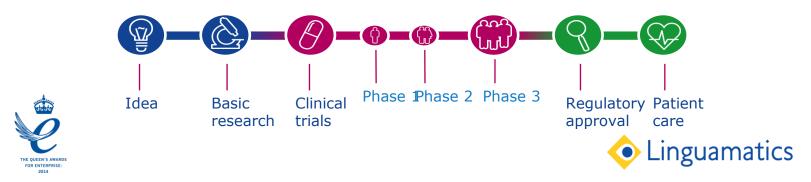
CHALLENGE

- Paucity of knowledge of natural history of disease
- Sparse data, needs high recall across full text papers
- Mutation patterns very variable
- Structured databases lack broad phenotypic association data


SOLUTION

- Abstracts identified in MEDLINE using broad vocabularies.
- Full text PDFs processed for text analytics.
- I2E mutation ontology and bespoke severity vocabs enabled extraction of genotypephenotype associations.

BENEFIT


- Extraction of patient mutations matched or bettered genetic databases
- Increased understanding of IDS mutational spectrum for provider diagnostics and patient awareness
- Enabled rational approach to immune response classification

I2E for Clinical Decision Support in Hospital Rounds: Real-time access to medical knowledge for on the spot patient care

Medline Abstracts and Science Direct

Georgetown University Medical Center

- Internationally recognized academic medical center
- Dahlgren Memorial Library serves GUMC
- Jonathan Hartmann is Senior Clinical Informationist at DML and provides services to MedStar Georgetown University Hospital

GU Medical Center Requirements

- Informationist accompanies clinical teams on daily rounds
 - General Pediatrics
 - Pediatric and Neo Natal Intensive Care
 - Internal Medicine
- Clinical staff ask Informationist questions
 - Normal saline vs lactated ringers for pancreatitis patients?
 - Causes of pseudomembrane other than C. difficile infection?
- Tablets can be conveniently carried around during rounds
- Informationist can retrieve most needed information on rounds, but in some cases has to go back to office to find out more and provide to clinical staff later

Why use I2E?

- In house research for building database
 - MEDLINE
- Access to published research during rounds
 - MEDLINE
 - Full Text Articles
 - Eliminate the need to go back to desk, retrieve information and provide it to clinical staff at a later stage
 - On the spot answers help clinical staff to make decisions more promptly and improve patient care

 Information retrieved at the point of care allows physicians to make critical decisions in a shorter timeframe



Summary

- Unstructured text in literature is growing across bench-to-bedside continuum
- Application of analytics and NLP is key to future drug discovery, development and delivery of better healthcare
- Linguamatics I2E provides agile NLP text mining:
 - Interactive and scalable search
 - Workflow can be automated
 - Precise, structured results in the format you need

Thank You!

For more information... Visit: <u>www.linguamatics.com</u>

Contact: Susan LeBeau, VP Sales Email: susan.lebeau@linguamatics.com Phone: +1 (774) 571-1117 Email: enquiries@linguamatics.com

Meet our experts at upcoming events: Visit http://www.linguamatics.com/welcome/events/conferences.html

